
CS 537 Notes, Section #14: Sharing Main

Memory

Issues:

 Want to let several processes coexist in main memory.

 No process should need to be aware of the fact that memory is shared. Each must run

regardless of the number and/or locations of processes.

 Processes must not be able to corrupt each other.

 Efficiency (both of CPU and memory) should not be degraded badly by sharing. After

all, the purpose of sharing is to increase overall efficiency.

Relocation: draw a simple picture of memory with some processes in it.

 Because several processes share memory, we cannot predict in advance where a

process will be loaded in memory. This is similar to a compiler's inability to predict

where a subroutine will be after linking.

 Relocation adjusts a program to run in a different area of memory. Linker is an

example of static relocation used to combine modules into programs. We now look at

relocation techniques that allow several programs to share one main memory.

Static software relocation, no protection:

 Lowest memory holds OS.

 Processes are allocated memory above the OS.

 When a process is loaded, relocate it so that it can run in its allocated memory area

(just like linker: linker combines several modules into one program, OS loader

combines several processes to fit into one memory; only difference is that there are no

cross-references between processes).

 Problem: any process can destroy any other process and/or the operating system.

 Examples: early batch monitors where only one job ran at a time and all it could do

was wreck the OS, which would be rebooted by an operator. Many of today's personal

computers also operate in a similar fashion.

Static relocation with protection keys (IBM S/360 approach):

 Protection Key = a small integer stored with each chunk of memory. The chunks are

likely to be 1k-4k bytes.

 Keep an extra hardware register to identify the current process. This is called the

process id, or PID. 0 is reserved for the operating system's process id.

 On every memory reference, check the PID of the current process against the key of

the memory chunk being accessed. PID 0 is allowed to touch anything, but any other

mismatch results in an error trap.

 Additional control: who is allowed to set the PID? How does OS regain control once

it has given it up?

 This is the scheme used for the IBM S/360 family. It is safe but inconvenient:

o Programs have to be relocated before loading. In some systems (e.g. MPS) this

requires complete relinking. Expensive.

o Cannot share information between two processes very easily

o Cannot swap a process out to secondary storage and bring it back to a different

location

Dynamic memory relocation: instead of changing the addresses of a program before it is

loaded, we change the address dynamically during every reference.

 Under dynamic relocation, each program-generated address (called a logical or virtual

address) is translated in hardware to a physical, or real address. This happens as part

of each memory reference.

 Show how dynamic relocation leads to two views of memory, called address spaces.

With static relocation we force the views to coincide. That there can be several levels

of mapping.

Copyright © 1997, 2002, 2010 Barton P. Miller

Non-University of Wisconsin students and teachers are welcome to print these notes their

personal use. Further reproduction requires permission of the author.

